 |
advertisement |
|
|
|
|
|
|
Industrial Automatic Control Systems and Controllers Annotation << Back
Analysis of the Efficiency of Learning Algorithms Based on Gradient Descent in Case of A Pretrained Neural Network Fine-tuning |
K.A. Barinov, K.V. Mikolaichuk
Deep learning algorithms based on gradient descent currently have a success in various computer vision tasks, such as image classification, object detection and semantic segmentation. However, there is a problem of efficient using training data in case of exploiting a trained neural network: big amount of new data, which contain useful features, could increase performance of a neural network if they were included in the training process. In this work we brief an idea of Semi-Supervised learning for object recognition and make a review and comparison of 3 versions of the Pseudo-labelling method. Also the results of experiments show, that Semi-Supervised learning can help to achieve better accuracy (mAP) in task of the MADI History Museum’s exhibits recognition using 2-times less amount of labelled data.
Keywords: neural networks, object recognition, Semi-Supervised learning, Pseudo-labelling.
DOI: 10.25791/asu.3.2022.1352
Pp. 09-17. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |